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Abstract. A General Game player is a computer program that can play games
of which the rules are only known at run-time. These rules are usually given as a
logic program. General Game players commonly apply a tree search over the state
space, which is time consuming. In this paper we therefore present a new method
that allows a player to detect that a future state satisfies some beneficial properties,
without having to explicitly generate that state in the search tree. This may lead to
faster algorithms and hence to better performance. Our method employs a search
algorithm that searches backwards through formula space rather than state space.

1 Introduction

The development of programs that can play specific games such as Chess and Go, has
long been an important field in AI research. However, such game players are limited
in the sense that they are only able to play one specific game and often rely on game-
specific heuristics invented by humans. Therefore, recently more attention has been
given to the concept of General Game Playing (GGP). A General Game Playing agent
is able to interpret the rules of a game at run-time and devise a strategy for it without any
human intervention. Since 2005 General Game Playing competitions have been held
annually at the AAAI Conference [6]. A language called Game Description Language
(GDL) [11] was invented to write down game-rules in a standardized, machine-readable
way. GDL specifies games as a logic program, and is similar to other logic-based lan-
guages such as ASP [4] and Datalog [3].

Most GGP players apply a generic search algorithm such as minimax search [12],
alpha-beta pruning [9] and, most importantly, Monte Carlo Tree Search (MCTS) [10,
7]. These techniques are based on the principle of forward searching: they start with the
initial state, determine the set of legal moves in that state, then determine for each of
these moves the next state that would result if that move were executed, evaluate this
hypothetical future state, and then repeat the procedure.

In order to be able to quickly generate a future state given the current state and a
legal move, most GGP players translate a GDL-specified game into a state transition
machine. A disadvantage of this technique is that it requires grounding to get rid of any
variables in the rules. Every rule is replaced by several variable-free copies of that rule
by replacing every variable with a possible ground term for that variable. Grounding
makes logical reasoning much simpler, but it also causes the size of the search space to
explode, and may cause explicit symmetries in the game rules to get lost.

In this paper we propose a technique that may improve the speed of tree-search al-
gorithms. The idea is that one may be able to evaluate a game state before it is generated



in the tree. We achieve this by applying a backward search that does not require ground-
ing. It starts with a formula that describes states satisfying some desired property (such
as being a terminal winning state) and then searches for formulas that describe states
which are one move away from a state with that property, and so on. This backward
search is applied before the forward search is started.

In the field of planning such a technique is known as Lifted-Backward-Search [8].
The difference between planning and GGP, however, is that planning is normally con-
cerned with a single agent, or a group of agents with a common goal. In GGP on the
other hand the agent needs to deal with adversaries. Therefore, our approach combines
Lifted-Backward-Search with a min-max strategy. We show that our approach is sound
and compete, in the sense that, given any desired property every state satisfying that
property can be found by our algorithm, and that every state found by our algorithm
indeed satisfies that property.

The rest of the paper is organized as follows: In Section 2 we give a short overview
of existing work. In Section 3 we explain how our technique can be used in a GGP
agent. In Section 4 we will formalize the language in which we present our algorithm.
In Section 5 we will present the algorithm itself and prove its main properties. Finally,
in section 6 we present our conclusions.

2 Related Work
FluxPlayer [13], the winner of the 2006 AAAI GGP competition is a player that ap-
plies an iterated deepening depth-first search method with alpha-beta pruning, and uses
Fuzzy logic to determine how close a given state is to the goal state. Cadia Player [5],
the winner in 2007, 2008, and 2012, is based on MCTS, extended with several heuris-
tics to guide the rollouts so that they are better informed and hence give more realistic
results, and also the winner of the 2014 competition, Sancho,1 as well as the winner of
2015, Galvanise,2 apply variants of MCTS.

A technique similar to ours is described in [14]. The main difference however is that
their backward search is grounded. Furthermore, their algorithm only goes 1 step back,
whereas our algorithm may take any number of backward steps.

In [2] the authors implement a heuristic backward search algorithm called HSPr
for single-agent planning domains. They do not find much benefit in backward search
however, because it generates many ‘spurious states’: states that are impossible to reach.
However, in [1] the authors manage to improve HSPr by extrapolating several common
techniques from forward search to backward search and thus creating a new regression
planner called FDr. A general overview of planning algorithms, including Lifted Back-
ward Search, can be found in [8]. To the best of our knowledge lifted backward search
has never been used in domains with adversarial agents.

3 A Player Based on Backward Search

A standard approach to General Game Playing is to apply Monte Carlo Tree Search.
Key to this approach is that one evaluates a game state w by simulating a game in which

1 http://sanchoggp.blogspot.co.uk/2014/05/what-is-sancho.html
2 https://bitbucket.org/rxe/galvanise_v2



random moves are played starting at state w until a terminal state is reached, and then
evaluating the player’s utility for that terminal state. This is called a rollout. Repeating
this many times and averaging the utility values returned by these rollouts yields an
estimation of the true utility value of the state w. Unfortunately, since these rollouts are
random, one needs to perform a lot of them before the result becomes accurate.

We propose to increase the accuracy by combining MCTS with Lifted-Backward-
Search. The idea is that, before applying MCTS, the player will apply backward search
for a given amount of time, say 10 seconds for example. Assuming the game is a turn-
taking game for two players, which we refer to as A and B, the backward search gen-
erates two sequences of formulas α0, α1, α2 . . . and β0, β1, β2 . . . which are stored in
memory and will be used by the rollouts of the MCTS. Here, α0 represents the set of
winning states for our playerA, while α1 represents the set of all states for which player
A has a move that will lead to winning state. The formula α2 represents the set of states
for which the opponent cannot avoid the next state to satisfy α1. That is, in general, if
a state satisfies αi it means that A has a strategy that can guarantee that the next state
will satisfy αi−1 (either because A has a move that leads to such a state or because B
does not have any move that can lead to a state that does not satisfy it). The formulas
βi have the opposite interpretation: β0 represents a winning state for the opponent B,
and if a state satisfies βi our opponent can enforce the next state to satisfy βi−1. After
the backward search our player applies MCTS. For each game state explored during
a rollout, the algorithm determines whether it satisfies any of the αi or βi. If it does
satisfy any of these formulas the rollout can be stopped and return either the value 100
(if the state satisfies any αi), or 0 (if it satisfies some βi).

Not only does this allow us to terminate the rollout earlier, it also yields a much
more accurate result. Say for example that we have a state w in which player A has 20
possible moves, of which only one leads to a winning state yielding 100 points, and all
others lead to a draw, yielding 50 points. Of course, any rational player would always
pick that winning move, so the non-terminal state w itself can be assigned a value of
100. However, since rollouts are random, a rollout will only pick the correct winning
move and return 100 once in every 20 times it visits w. With our algorithm on the other
hand, the rollout will detect that w satisfies α1 and therefore always return the correct
utility value of 100.

Our backward search works with non-grounded formulas, which means that many
different states can be described by a single formula. Of course, generating those for-
mulas may take a lot of time, and in the worst case the size of the formulas αn may
grow exponentially with n. However we expect that in many cases the formulas remain
relatively compact because they contain variables.

The fact that α0 and β0 represent terminal winning states for the respective players
is just an example. One could also give them the interpretation of some other important
game property. For example, in chess, α0 could represent those states in which A just
captured the opponent’s queen. In that case, whenever the rollout function finds a state
that satisfies any of the αi’s it will return some heuristic value.



4 Formal Definitions
In general, GGP deals with games that take place over one or more discrete rounds.
In each round the game is in a certain state, and each player chooses an action (also
referred to as a move) to take. The game description specifies the initial state, which
actions each player is allowed to choose given any state, and how in any state the chosen
actions determine the next state.

In this paper we assume the game is a two-player turn-taking game that can end in
three possible ways: a win for the first player, a win for the second player, or a draw.
Furthermore, we assume that if the game has a winner, then the winner is always the
player who made the last move. Examples of such games are Chess, Checkers and Tic-
Tac-Toe. In fact, it seems that most of the games available on the GGP website3 satisfy
these criteria. Furthermore, we also assume that the game description does not contain
any cycles (see Def. 4). This is a restriction, because GDL only requires rules to be
stratified (see [11]), which is a weaker assumption than being cycle-free. We do expect
however that the assumption of being cycle-free can be dropped, but we leave it as
future work to investigate this.

We will refer to the two players by A and B, where A is the player that applies our
algorithm and B is our opponent. Since we assume turn-taking games in each round
there is only one player that has an action to choose. We call this player the active
player of that round.

4.1 State Transition Model

We first define the notion of a game in terms of a state transition model.

Definition 1. A game G is a tuple 〈P,A,W,w1, T, L, u, U〉, where:
– P is the set of players: P = {A,B}
– A is the set of actions.
– W is a non-empty set of states.
– w1 ∈W is the initial state.
– T ⊂W is the set of terminal states.
– L : W \ T → 2A is the legality function, which describes for each non-terminal

state which actions are legal.
– u : W ×A → W is the update function that maps each state and action to a new

state.
– U : T × P → [0, 100] is the utility function that assigns a utility value to each

terminal state and player.

The idea is that the playersA andB both have their own set of actions, denotedAA and
AB respectively, withA = AA∪AB andAA∩AB = ∅. The game consists of discrete
rounds, in which the players alternately pick an action a from their respective action sets
and hence generate a sequence of actions a1, a2, . . . an. Given a state w and an action a
the update function u defines a new state u(w, a). Therefore, given the initial state w1

and a sequence of actions the update function defines a sequence of states w1, w2, . . .

3 http://www.ggp.org/view/tiltyard/games/



where each wi+1 equals u(wi, ai). If the current state is wi then the players may only
pick their action from the set L(wi). Since we are assuming turn-taking games it is
always the case that either L(w) ⊆ AA or L(w) ⊆ AB .

4.2 Syntax
In this paper we will use our own language L, which is a segment of first-order logic,
because it is easier to describe our algorithm in L than in GDL. Our language borrows
its basic components from GDL so that any game description given in GDL can be
translated easily into L. Given a game G we define L to be a language with a finite
set of constants, function symbols and relation symbols which are specific to the game
G, a finite set of variables and logical connectives (¬, ∨, ∧,→ and ∃).4 L inherits the
following game-independent relation symbols from GDL: distinct, true, does, legal,
goal, terminal, and next. Their semantics will be given in the next subsection.5 As
a segment of first-order logic, we do not employ the full syntax of first-order logic.
Instead we impose heavy restrictions on the structure of terms and formulas. A formula
in L can either be a complex formula,6 which is a combination of atoms using ¬, ∨, ∧,
or ∃, or a rule defined as follows:

Definition 2. A rule is an expression inL of the form: p1 ∧ p2 ∧ . . . pn → q where
each pi is a positive or negative literal, and q is a positive literal. The atom q is called
the head of the rule and the pi’s are called the subgoals of the rule. The conjunction of
subgoals is called the body of the rule.

The body of a rule may be the empty conjunction (in which case the rule is also called
a fact), and the subgoals and the head of a rule may contain variables. For clarity we
will always denote variables with a question mark, e.g. ?x. Similar to the restrictions on
rules in GDL, the relation symbols distinct, true and does cannot appear in the head
of any rule, while legal, goal, terminal and next cannot appear in the body of any
rule. Apart from these key words rules may also contain user-defined relation symbols.

Definition 3. There is a certain subset of the constants ofL that we call action-constants,
and a certain subset of the function symbols that we call action-functions. An action-
function can only contain action-constants or variables that range over the action-
constants. A term containing an action-function is called an action-term.

The relation symbols does and legal can only contain action terms. A ground atom of
the form does(t) is called an action-proposition. The size of the set of ground action
terms must be equal to the size of A.

Definition 4. The dependency graph of a set of rules R is a directed graph that con-
tains a vertex vp for each relation symbol p that appears in any rule in R, and there is
an edge from vp to vq if there is a rule in which p appears in the body and q appears
in the head. A set of rules R is cycle-free if its dependency graph does not contain any
cycles.

4 The universal quantifier ∀ is not included in the language.
5 GDL defines more relations, but these are not relevant for this paper.
6 The implication → is not allowed in a complex formula.



Definition 5. A proposition of the form true(t), where t is a ground term of L, is called
a base proposition. The (finite) set of all base propositions is denoted as B.

Definition 6. A formula is called unwound if it only contains the relation symbols ‘dis-
tinct’, ‘true’ and ‘does’, and it is called wound otherwise.

We will see below that for an unwound formula we can determine whether it is satisfied
or not in a straightforward manner, whereas for wound formulas we first need to rewrite
(‘unwind’) the formula as an unwound formula, using the rules of the game.

Definition 7. Let ϕ be an atom and p be the relation symbol of ϕ. Then ϕ is called
statewise if none of the paths in the dependency graph of R that go through vp pass
through the vertex corresponding to the relation symbol ‘does’. A formula φ is called
statewise if all its atoms are statewise. A formula is called non-statewise otherwise.

As we will see below, the satisfaction of a statewise formula only depends on the game
state, while for non-statewise formulas it depends on the state as well as on the chosen
action. Just like in GDL, we pose the restriction on L that any atom containing legal,
goal, or terminal must be statewise.

4.3 Semantics
Given a game G and a language L for that game, let V be a valuation function. That is:
V is an injective function V :W → 2B that maps each world state of G to a different set
of base-propositions. The interpretation of V is that when the game is in a state w the
propositions in V (w) are considered true and all other base-propositions are considered
false. Furthermore, we define a bijective map µ that maps each action a ∈ A to a ground
action-term ta. In the following we will assume that G, L,R, V , and µ are fixed.

Definition 8. Let t and s be ground terms, w ∈W , and a, b ∈ A, then we define:

– V,R �(w,a) true(t) iff true(t) ∈ V (w)
– V,R �(w,a) does(µ(b)) iff a = b and a ∈ L(w)
– V,R �(w,a) distinct(t, s) iff t 6= s

Here a = b means that a and b are syntactically equal, and t 6= s that t and s are
syntactically different. Note that the entailment of true(t) and distinct(t, s) does not
depend on the action a.

Definition 9. Let φ be any (non-ground) formula. Then we define V,R �(w,a) ∃φ to
hold iff there exists a substitution θ such that φ[θ] is ground and V,R �(w,a) φ[θ] holds.

Definition 10. LetR be a set of rules, q an atom, r a rule inR and θ the most general
substitution that unifies q with the head of r. Then we say the body of r[θ] is a premise
of q. Furthermore, we say the disjunction of all premises of q is the complete premise
of q, and is denoted as Pr(q).

For example, if we have an atom q(t) where t is a ground term, and we have the follow-
ing two rules: p1(?x) → q(?x) and p2(?y) → q(?y) then Pr(q(t)) = p1(t) ∨ p2(t).
Note that this definition implies that if there is no rule r such that q can be unified with
the head of r then Pr(q) = ⊥, and that if q can be unified with a fact then Pr(q) = >.



Definition 11. Let q be any ground wound atom. Then we define:
V,R �(w,a) q iff V,R �(w,a) ∃Pr(q).

Definition 12. Let φ be any ground formula. Then V,R �(w,a) φ is defined by the
standard interpretation of the connectives of propositional logic, and Defs. 8 and 11.

Definitions 8, 9, 11 and 12 together recursively define satisfaction. The fact that R
is finite and cycle-free guarantees that the recursion terminates. If for some formula φ
we have V,R �(w,a) ∃φ then we say that (w, a) satisfies φ. If φ is statewise we may
also say that w satisfies φ, and we may denote this as V,R �w ∃φ.

For example, if φ = goal(A, 100), and R contains a rule true(t)→ goal(A, 100).
Then w satisfies φ if true(t) ∈ V (w).

Definition 13. A game description G for a game G is a tuple 〈L, V, µ,R〉 where R is
finite and cycle-free. Furthermore, all of the following must hold:

– V,R �(w,a) terminal iff w ∈ T
– V,R �(w,a) legal(µ(a)) iff a ∈ L(w)
– V,R �(w,a) next(t) iff V �u(w,a) true(t)
– V,R �(w,a) goal(p, x) iff U(w, p) = x

5 Backward Search

The goal of playerA is to bring about a state in which both terminal and goal(A, 100)
are satisfied. For a given state it is easy to verify whether these are satisfied or not.
However, we would like our player to determine in advance whether it can enforce
these propositions to be true in any future state. We therefore apply an algorithm that
determines a sequence of unwound statewise formulas α0, α1, α2 . . . until time runs
out. Their interpretation is that if a state w satisfies αi then A can enforce a victory in
i rounds. Note that our assumption that the winner always makes the last move implies
that if the game is in a state that satisfies αi and i is an odd number, then A is the active
player, whereas if i is an even number then B is the active player. In order to explain
how these formulas are calculated we need to define two operators, which we call the
C-operator and the N-operator.

5.1 The C-Operator

In our language any formula can be rewritten as an equivalent unwound formula. There-
fore, we here define an operator that takes a formula φ as input and outputs an equiv-
alent unwound formula. In Section 5.2 we will see that this is important because the
N-operator can only operate on unwound formulas.

Definition 14. We define the C-operator as follows:

– For any terms t, s: C(true(t)) = true(t), C(distinct(t, s)) = distinct(t, s).
– For any action-term a: C(does(a)) = does(a) ∧ legal(a)
– For any wound atom q: C(q) = ∃Pr(q)
– For any non-atomic φ we obtain C(φ) by replacing each atom p in φ by C(p).



Thus, if we have: φ = q(t) ∧ does(a) with t a ground term, and the only rules in R
of which the head can be unified with q(t) are the following two: p1(?x)→ q(?x) and
p2(?y)→ q(?y), with ?x and ?y variables, then:
C(φ) = (p1(t) ∨ p2(t)) ∧ does(a) ∧ legal(a).

We use the notation C2(φ) to denote C(C(φ)), and Cn(φ) for C(Cn−1(φ)). Since
we require thatR is finite and cycle-free, we have that for any formula φ there is always
some n for which Cn(φ) = Cn−1(φ). In other words, the sequence C1(φ), C2(φ) . . .
always converges. Therefore, we can define C∞(φ) to be the limit of this sequence.

Definition 15. We define C∞ as follows: C∞(φ) = Cn(φ) iff Cn(φ) = Cn−1(φ)

Lemma 1. For any formula φ the formula C∞(φ) is unwound.

Proof. Suppose that the formulaCn(φ) contains an atom p of which the relation symbol
is not distinct, true, or does. ThenCn+1(φ) contains ∃Pr(p) instead of p, but ∃Pr(p)
is not equal to p because R is cycle-free. This means Cn(φ) is not equal to Cn+1(φ),
which means that Cn(φ) is not C∞(φ). The conclusion is that if Cn(φ) = C∞(φ) then
C∞(φ) cannot contain any such atom, and thus is unwound.

Lemma 2. For any formula φ, any state w and any action a we have:
V,R �(w,a) ∃C∞(φ) iff V,R �(w,a) ∃φ

Proof. It follows directly from Defs. 11, 9, 12 and 14, that V,R �(w,a) ∃C(φ) iff
V,R �(w,a) ∃φ. This argument can be repeated to prove the lemma.

Let ηA denote some wound statewise formula that player A desires to be satisfied,
for example: ηA = terminal ∧ goal(100, A) (this example formula describes the ter-
minal states in which A wins the game). Then we define: α0 := C∞(ηA). Note that α0

describes exactly the same property as ηA, but α0 is unwound.

5.2 The N-Operator

Now that we have defined α0 we want to define the other formulas αi. For this we need
an operator that ‘translates’ a formula φ into a new formula φ′ such that we know that
if φ′ is true in the current state then φ will be true in the next state.

Definition 16. Given any unwound statewise formula φ, the formula N(φ) is obtained
by replacing every occurrence of the relation symbol ‘true’ by the relation symbol
‘next’. The resulting formula N(φ) is wound and non-statewise.

For example, if φ = true(t1) ∨ true(t2) then N(φ) = next(t1) ∨ next(t2).
Suppose we have a game state w and we want to pick an action a such that the next

state u(w, a) will satisfy some formula φ. The action we need to pick is then the action
a for which (w, a) satisfies N(φ). Specifically, if we apply this to α0 it means that if
a state-action pair (w, a) satisfies N(α0) then A can guarantee the property α0 to be
satisfied in the next state by playing action a in state w.

Lemma 3. Let φ be an unwound statewise formula. Then we have:
V,R �(w,a) ∃N(φ) iff V,R �u(w,a) ∃φ



Proof. We will only prove this for a specific example, but it can be generalized easily.
Suppose that φ = true(t1)∧true(t2). We have that (w, a) satisfiesN(φ) = next(t1)∧
next(t2) iff (w, a) satisfies next(t1) and (w, a) satisfies next(t2). But, according to
Def. 13 this is true iff u(w, a) satisfies true(t1) and u(w, a) satisfies true(t2), which
means that u(w, a) satisfies true(t1) ∧ true(t2), which is φ.

For example, in Tic-Tac-Toe, suppose we have: φ = true(cell(1, 1, X)) which states
that φ is satisfied if the top left cell contains an X . Then we have:

N(φ) = next(cell(1, 1, X)).

By itself this formula is not very useful, but by using theC∞-operator we can transform
it into an unwound formula, for which we can easily check whether it is satisfied or not.
The game description of Tic-Tac-Toe contains the following three rules:

true(cell(1, 1, X))→ next(cell(1, 1, X))

does(mark(1, 1, X))→ next(cell(1, 1, X))

true(cell(1, 1, b))→ legal(mark(1, 1, X))

The first rule states that if the upper left cell is marked with an X then it will also be
marked with an X in the next state. The second rule states that if A makes the move
mark(1, 1, X) then the upper left cell will be marked with an X in the next state. The
third rule states that it is legal for player A to make a mark in the upper left cell if that
cell is currently empty. Using these rules we obtain:
C∞(N(φ)) = true(cell(1, 1, X)) ∨ (does(mark(1, 1, X))∧true(cell(1, 1, b)))
which states that if in the current state the upper left cell contains an X, or if the upper
left cell is blank and playerAmarks it with an X, then in the next turn φwill be satisfied.

We now know that if the game is in a state w that contains the base-proposition
true(cell(1, 1, X)) or it contains the base-proposition true(cell(1, 1, b)) andA chooses
the actionmark(1, 1, X) then the next state u(w, a) will (also) satisfy true(cell(1, 1, X)).

5.3 Action Normal Form

We have seen in the previous section that if we want some formula φ to be true in the
next state, then we want N(φ) to be satisfied in the current state. However, N(φ) is
non-statewise, so the satisfaction of N(φ) depends on the action chosen by the active
player. Therefore, what we want is to determine, given a state w, which action a the
active player needs to choose in order to satisfyN(φ). To make this easier, we transform
the formula into Action Normal Form, as defined in [15].

Definition 17. We say a formula φ is in Action Normal Form (ANF) for player A if
it is written in the following form: φ =

∨
t∈S X

φ
t ∧ does(t) where S is a set of

action-terms such that for each action a ∈ A there is a term t ∈ S that can be unified
with µ(a), and all X φt are statewise.

The idea of ANF is that it explicitly separates the action-propositions from the other
types of atoms. It gives us a clear recipe to determine which action to choose in a state
w if we want φ to be satisfied.



Lemma 4. For any non-statewise formula φ there is a formula φ which is in ANF, such
that: V,R �(w,a) ∃φ iff V,R �(w,a) ∃φ.

Proof. We only prove this for the case that φ is ground. For each action a we can
generate a formula X φµ(a) by replacing every occurrence of does(µ(a)) in φ with > and
replacing all other action-propositions with ⊥. Note that we then have that, for every
a ∈ A, (w, a) satisfies X φµ(a) ∧ does(a) iff (w, a) satisfies φ.

Now suppose that for some statew and some formula φwe want to choose an action
a such that (w, a) satisfies φ. We can achieve this by first generating an equivalent
formula φ which is in ANF. We can then check for every X φt in the expression whether
it is satisfied by w or not. If for some term t ∈ S we have that X φt is indeed satisfied
by w then there is an action a such that µ(a) is unifiable with t and such that (w, a)
satisfies X φt ∧ does(t) and therefore we have that (w, a) satisfies φ.

From now on, the notation φ will denote any formula that is in ANF and that is
equivalent to φ. Furthermore, we will use φ

+
to denote φ in which all action-propositions

have been replaced with>. Thus, if: φ =
∨
t∈S X

φ
t ∧does(t) then: φ

+
:=
∨
t∈S X

φ
t .

Lemma 5. If a state w satisfies φ
+

then there exists an action a such that (w, a) satis-
fies φ, and hence also φ.

Proof. A state w satisfies φ
+

iff there is some X φt in the ANF of φ that is satisfied,
which means there is a substitution θ such that w satisfies X φt [θ]. We then have that
(w, t[θ]) satisfies X φt [θ] ∧ does(t[θ]), which means that (w, a) satisfies X φt ∧ does(t),
with a = µ−1(t[θ]), and therefore (w, a) satisfies φ, and because of Lemma 4 (w, a)
satisfies φ.

Note that φ is not uniquely defined. However, from now on we will simply assume we
have some algorithm that outputs a unique φ for any given φ. Then, for any odd positive
integer n we can define:

αn = C∞(N(αn−1) ∧ ¬terminal)
+

(1)

Lemma 6. Let n be any odd positive integer. A statew satisfies αn iffw is non-terminal
and there is some action a forA that is legal in state w and for which the resulting state
u(w, a) satisfies αn−1.

Proof. If we combine Eq. (1) with Lemma 5 we conclude that w satisfies αn iff there
exists an action a such that (w, a) satisfies C∞(N(αn−1)∧¬terminal). According to
Lemma 2 this holds iff (w, a) satisfies N(αn−1) ∧ ¬terminal, and then using Lemma
3 we conclude that this holds iff u(w, a) satisfies αn−1 and w is non-terminal.

We now still need to define αn for even n. Note that if n is even and a state w
satisfies αn then it means that in state w player B is the active player. However, since
B is an adversary, the existence of an action for B that leads to a state satisfying αn−1
is not enough to guarantee that αn−1 will be satisfied in the next state. After all, B may
choose a different action in order to prevent this. Therefore, for states in which B is the



active player we demand that all actions of B lead to a state satisfying αn−1. Let us
first define a formula α′n as follows: α′n = C∞(N(αn−1 ∨ αn−2 ∨ . . . α0)). Then, for
n is even, we can define:

αn = C∞
(
¬terminal ∧ ¬

∨
t∈S
∃(legal(t) ∧ ¬Xα

′
n

t )
)

(2)

where S is the same set of action-terms as the one that appears in the ANF of α′n and
the Xα

′
n

t are also obtained from the ANF of α′n.

Lemma 7. Let n be an even number. A state w satisfies αn iff for every move a of B
that is legal in state w there is an integer m < n such that u(w, a) satisfies αm.

Proof. Eq.(2) states that w satisfies αn iff w is non-terminal and there is no action-
term t and no substitution θ such that w satisfies legal(t[θ]) ∧ ¬Xα

′
n

t [θ]. This means
that for every legal action a = µ−1(t[θ]) we have that w satisfies Xα

′
n

t [θ] and hence
that (w, a) satisfies Xα

′
n

t [θ]∧does(a), which means that (w, t[θ]) satisfies α′n, which is
C∞(N(αn−1∨αn−2∨ . . . α0)). Again, using Lemmas 2 and 3 this means that u(w, a)
satisfies αn−1 ∨ αn−2 ∨ . . . α0, which means there is some m < n for which u(w, a)
satisfies αm.

Lemma 8. If a state w satisfies αn and n > 0 then w is a non-terminal state.

Proof. This follows directly by applying Lemma 2 to Equations 1 and 2.

Theorem 1. If a state w satisfies αn for some n then there exists a strategy for A that
guarantees that a state satisfying α0 can be reached in at most n steps whenever the
game is in the state w.

Proof. We know from Lemmas 6 and 7 that if w satisfies αn and A plays optimally,
then the next state will satisfy some αm with m < n. This means that no matter what
strategy is played by B, in every round that follows some αm will be satisfied, and m
will be decreasing with every new round. Moreover, since every αm is non-terminal
(except for m = 0) this means the game will eventually reach a state that satisfies α0.

Theorem 2. Let w be a state such thatA has a strategy that guarantees that some state
w′ that satisfies α0 can be reached then there is an integer n such that w satisfies αn.

Proof. The proof goes by induction. If w already satisfies α0 then the theorem clearly
holds. Our induction hypothesis says that for any state in which A has such a strategy
in n − 1 steps, αn−1 is satisfied. We now need to prove that if w is non-terminal and
A has a strategy that guarantees α0 in n steps then αn is satisfied. If n is odd, then A
is the active player, so we know A has a move a that leads to a state u(w, a) which is
only n − 1 steps away from w′. According to the induction hypothesis we then know
that u(w, a) satisfies αn−1. From Lemma 6 it then follows that w satisfies αn. If n is
even, then it means that all legal moves of B lead to a state that satisfies αm for some
m < n. According to Lemma 7 this means that w satisfies αn.



6 Conclusions
We have presented a backward search algorithm for turn-taking games in General Game
Playing. Given any desired property encoded by some formula ηA it generates a se-
quence of formulas α0, α1, ... with the interpretation that if a game state w satisfies
some αi then player A has a strategy that guarantees that ηA will be satisfied in i steps.
We expect this method to be useful as an addition to MCTS because it allows one to
quickly evaluate whether a target state can be reached without having to generate all the
states that lead to it. The effectiveness of this method depends on whether it is possible
to keep the formulas compact. Therefore, an empirical evaluation is left as future work.
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